skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ho, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon nanotube (CNT) field-effect transistors (CNFETs) promise significant energy efficiency benefits versus today's silicon-based FETs. Yet despite this promise, complementary (CMOS) CNFET analog circuitry has never been experimentally demonstrated. Here we show the first reported demonstration of full CNFET CMOS analog circuits. For characterization, we fabricate analog building block circuits: multiple instances of two-stage op-amps. These CNFET CMOS op-amps achieve gain >700 (maximum derivative of output voltage with respect to differential input voltage), operate at a scaled sub- 500 mV supply voltage, achieve high linearity (even when operating at these scaled voltages), and are robust over time (minimal drift over >10,000 cycled measurements over 12 hours). Additionally, we demonstrate a front-end analog sub-system that integrates a CNFET-based breath sensor with an analog sensor interface circuit (transimpedance amplifier followed by a voltage follower to convert resistance change of the chemoresistive CNFET sensor into a buffered output voltage). These experimental demonstrations are the first reports of CNFET CMOS analog functionality that is essential for a future CNT CMOS technology. 
    more » « less
  2. Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology for energy-efficient electronics (Fig. 1). Despite this promise, CNTs are subject to substantial inherent imperfections; every ensemble of CNTs includes some percentage of metallic CNTs (m-CNTs). m-CNTs result in conductive shorts between CNFET source and drain, resulting in excessive leakage and degraded (potentially incorrect) circuit functionality (Fig. 1). Several techniques have been developed to remove the majority of m-CNTs (no technique today removes 100% of m-CNTs). While these techniques enabled the first digital CNFET circuits, it is still not possible to realize large-scale CNFET analog or mixed-signal CNFET circuits due to m-CNTs. As shown in Fig. 1, while a digital logic gate can still function correctly in the presence of a small fraction of m-CNTs (but with degraded resilience to noise) [1], a single m-CNT in an analog circuit can result in catastrophic failure (e.g., degrading amplifier gain resulting in functional failure of circuit blocks such as ADCs and DACs)1. This paper presents a circuit design technique, Self-Healing Analog with RRAM and CNFETs (SHARC), that leverages the programmability of non-volatile resistive RAM (RRAM) to automatically “self-heal” analog circuits in the presence of m-CNTs. Using SHARC, we experimentally demonstrate analog CNFET circuits robust to m-CNTs as well as the first mixed-signals CNFET subsystem (4-bit DAC and SAR ADC; these are the largest reported complementary (CMOS) CNFET circuit demonstrations to-date). 
    more » « less